Russian Journal of Organic Chemistry, Vol. 39, No. 10, 2003, pp. 1489–1492. Translated from Zhurnal Organicheskoi Khimii, Vol. 39, No. 10, 2003, pp. 1558–1560. Original Russian Text Copyright © 2003 by Ivanova, Khusainova, Shangiraeva, Akhmetvaleev, Miftakhov.

Prostanoids: LXXXVI.* Synthesis and Reductive Transformations of 2-Chloro-4,4-ethylenedioxy-3-phenylsulfanyl-2-cyclopentenone

N. A. Ivanova, A. A. Khusainova, F. G. Shangiraeva, R. R. Akhmetvaleev, and M. S. Miftakhov

Institute of Organic Chemistry, Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, 450054 Bashkortostan, Russia e-mail: bioreg@anrb.ru

Received April 17, 2002

Abstract—The reduction of 2-chloro-4,4-ethylenedioxy-3-phenylsulfanyl-2-cyclopentenone with sodium tetrahydridoborate in ethanol yields 3-chloro-4-hydroxy-2-phenylsulfanyl-2-cyclopentenone, while with the use of lithium aluminum hydride in tetrahydrofuran or the system Zn/NH_4Cl in methanol products of more profound reduction are obtained.

Oxygenated cyclopentenes having a phenyl vinyl sulfone fragment attract interest as central cyclopentenone building blocks in the synthesis of prostanoids according to the triple convergent coupling scheme [2–4]. With the goal of developing approaches to such compounds on the basis of hexachloropentadiene derivatives, in the present work we examined the reduction of phenylsulfanylcyclopentenone II under various conditions. Compound II was synthesized in more than 80% yield by reaction of previously reported 2,3-dichloro-4,4-ethylenedioxy-2-cyclopentenone (I) [5] with sodium benzenethiolate in methanol

Scheme 1.

^{*} For communication LXXXV, see [1].

(Scheme 1). The minor product of this reaction was 2,3-bis(phenylsulfanyl) derivative III (\sim 10%) which can readily be converted into symmetric diketone IV by acid hydrolysis (yield (87%).

We examined the reduction of cyclopentenone II with the use of $NaBH_4$ in ethanol, $LiAlH_4$ in THF,

and Zn/NH₄Cl in MeOH. The hydride reducing agents were found to afford different reduction products. In the reduction with sodium tetrahydridoborate, followed by treatment of the reaction mixture with acetone, we isolated expected alcohol V and hydroxycyclopentenone VI (Scheme 2). The latter was the only product when the reaction mixture was subjected to acid hydrolysis. Ready hydrolysis of related acetals in neutral media was also observed by us previously [6, 7]; this process is favored by intramolecular assistance by the existing hydroxy group.

The reduction of compound II with LiAlH_4 in tetrahydrofuran gave an anomalous product, hydroxycyclopentene VII. Unusual reduction product, dimethoxy derivative VIII, was also obtained by heating of cyclopentenone II with Zn/NH₄Cl in MeOH (Scheme 2). Probable mechanisms of formation of anomalous reduction products VII and VIII are of undoubted interest. The transformation II \rightarrow VII was presumed to involve intermediate X which is

Scheme 4.

likely to result from successive reduction of the ketone group in **II** to hydroxy, saturation of the double bond in **V** via hydride transfer, and stabilization of anion **IX** by opening of the dioxolane ring. Reductive elimination of the chlorine atom and subsequent protonation of enolate **X** lead to formation of final product **VII** (Scheme 3).

Presumably, the initial stage in the reaction of sulfide **II** with Zn/NH_4Cl in MeOH is reductive elimination of the phenylsulfanyl group. Next follows Michael addition of methanol to enone **XI** and synchronous elimination of the chlorine atom from sp^2 -hybridized carbon atom and opening of the dioxolane ring. Transetherification of enol ether **XII** with MeOH yields 3,4-dimethoxycyclopentenone **VIII** (Scheme 4).

3-Chloro-4-hydroxy-2-phenylsulfanyl-2-cyclopentenone (VI) obtained by reduction of ketone II with sodium tetrahydridoborate is promising as intermediate product in the syntheses of prostanoids, which we plan to perform.

EXPERIMENTAL

The IR spectra were recorded on UR-20 and Specord M-80 spectrometers from samples prepared as thin films or suspensions in mineral oil. The ¹H and ¹³C NMR spectra were obtained on a Bruker AM-300 spectrometer (300.13 and 75.47 MHz, respectively) using CDCl₃ as solvent and reference (δ 7.27 ppm, $\delta_{\rm C}$ 77.00 ppm). The mass spectra (electron impact, 20 and 70 eV) were run on an MKh-1306 instrument (ion source temperature 75–100°C). The progress of reactions was monitored by TLC using Silufol plates (eluent hexane–ethyl acetate); spots were visualized by treatment with an alkaline solution of potassium permanganate [8].

Reaction of 2,3-dichloro-2-cyclopentenone (I) with sodium benzenethiolate. Benzenethiol, 1.1 g (10 mmol), was added with stirring to a solution of 0.54 g (10 mmol) of sodium methoxide in 10 ml of methanol, and a solution of 1.4 g (6.7 mmol) of ketone I in 15 ml of methanol was added dropwise. The mixture was stirred for 1 h, an equal volume of water was added, and the mixture was extracted with chloroform $(3 \times 30 \text{ ml})$. The combined extracts were washed with a saturated aqueous solution of sodium chloride $(3 \times 10 \text{ ml})$ and dried over MgSO₄, and the solvent was distilled off. Recrystallization of the residue from petroleum ether-ethyl acetate (1:1) gave 1.71 g (85%) of sulfide II. The mother liquor was evaporated, and the residue was subjected to chromatography to isolate 0.2 g (10%) of bis-sulfide **III**. Compound **III** was kept for 2 h in a 1:1 mixture of methanol with 10% hydrochloric acid at room temperature. We thus isolated diketone **IV** in 87% yield.

2-Chloro-4,4-ethylenedioxy-3-phenylsulfanyl-2cyclopentenone (II). mp 65°C. IR spectrum, v, cm⁻¹: 1580, 1732. ¹H NMR spectrum, δ , ppm: 2.75 s (2H, 5-H), 3.72 m (2H, CH₂O), 3.91 m (2H, CH₂O), 7.35– 7.58 m (5H, C₆H₅). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 47.02 (C⁵), 65.74 (CH₂O), 110.54 (C⁴), 126.82 (C²), 128.79 (C^o), 129.50 (C^p), 132.14 (Cⁱ), 135.18 (C^m), 163.43 (C³), 192.19 (C¹). Mass spectrum: *m*/*z* 282. Found, %: C 55.41; H 3.83; Cl 12.38; S 11.24. C₁₃H₁₁ClO₃S. Calculated, %: C 55.22; H 3.92; Cl 12.54; S 11.34.

4,4-Ethylenedioxy-2,3-bis(phenylsulfanyl)-2cyclopentenone (III). Colorless oily substance. IR spectrum, v, cm⁻¹: 1575, 1730. ¹H NMR spectrum, δ , ppm: 2.70 s (2H, CH₂), 3.61 m (2H, CH₂O), 3.75 m (2H, CH₂O), 7.10–7.40 m (10H, C₆H₅). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 47.77 (C⁵), 65.58 (CH₂O), 111.17 (C⁴), 126.64 and 128.88 (C^{*p*}), 128.29 and 129.49 (C^{*i*}), 128.68 and 128.79 (C^o), 129.49 and 132.12 (C^{*m*}), 132.10 (C²), 169.52 (C³), 195.53 (C¹). Found, %: C 64.10; H 4.69; S 18.17. C₁₉H₁₆O₃S₂. Calculated, %: C 64.02; H 4.52; S 17.99.

2,3-Bis(phenylsulfanyl)-2-cyclopentene-1,4-dione (**IV).** Colorless oily substance. IR spectrum, v, cm⁻¹: 1745. ¹H NMR spectrum, δ , ppm: 3.05 s (2H, CH₂), 7.22–7.35 m (10H, C₆H₅). ¹³C NMR spectrum, δ_{C} , ppm: 42.64 (C⁵), 128.45 (C^{*i*}), 128.65 (C^{*i*}), 128.68 (C^{*p*}), 128.91 (C^{*o*}), 132.51 (C^{*m*}), 152.54 (C², C³), 192.43 (C¹, C⁴). Found, %: C 65.12; H 3.79; S 20.63. C₁₇H₁₂O₂S₂. Calculated, %: C 65.25; H 3.87; S 20.52.

Reduction of ketone II with NaBH₄. Sodium tetrahydridoborate, 0.03 g (0.8 mmol) was added at 0°C to a solution of 0.56 g (2 mmol) of ketone **II** in 10 ml of methanol. The mixture was stirred for 1 h, 3 ml of acetone was added, and the mixture was evaporated. Water, 10 ml, was added to the residue, the product was extracted into methylene chloride, the extract was dried over MgSO₄ and evaporated, and the residue was subjected to chromatography on silica gel using petroleum ether–ethyl acetate (8:2) as eluent. We isolated 0.47 g (82%) of hydroxy acetal **V** and 0.06 g (13%) of enone **VI**. Compound **VI** was obtained in 89% yield when the reaction mixture was treated with 5 ml of 5% hydrochloric acid.

2-Chloro-4,4-ethylenedioxy-3-phenylsulfanyl-2cyclopenten-1-ol (V). Yellow oily substance. IR spectrum, v, cm⁻¹: 1615, 3400. ¹H NMR spectrum, δ , ppm: 2.11 d (1H, 5-H_A, J = 4, 16 Hz), 2.6 d.d (1H, 5-H_B, J = 4, 16 Hz), 3.70–3.90 m (4H, CH₂O), 4.60 br.s (1H, 4-H), 7.10–7.3 m (5H, C_6H_5). ¹³C NMR spectrum, δ_C , ppm: 45.22 (C⁵), 66.13 and 65.76 (CH₂O), 70.96 (C¹), 115.20 (C⁴), 146.88 (C²), 130.14 (C³), 128.01 (C^{*p*}), 129.09 (C^{*o*}), 129.95 (C^{*m*}), 132.19 (C^{*i*}). Found, %: C 54.74; H 4.53; Cl 12.28; S 11.18. C₁₃H₁₃ClO₃S. Calculated, %: C 54.83; H 4.61; Cl 12.45; S 11.26.

3-Chloro-4-hydroxy-2-phenylsulfanyl-2-cyclopenten-1-one (VI). Yellow oily substance. IR spectrum, v, cm⁻¹: 1590, 1630, 3400. ¹H NMR spectrum, δ , ppm: 2.50 d.d (1H, 5-H, J = 3, 18 Hz), 2.90 d.d (1H, 5-H, J = 6, 18 Hz), 3.44 br.s (1H, OH), 4.77 br.s (1H, 4-H), 7.10–7.40 m (5H, C₆H₅). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 44.42 (C⁵), 73.50 (C⁴), 126.83 (C^{*p*}), 128.09 (C^{*o*}), 131.81 (C^{*i*}), 134.82 (C^{*m*}), 146.88 (C²), 167.31 (C³), 197.36 (C¹). Found, %: C 55.02; H 3.92; Cl 14.95; S 13.41. C₁₁H₉ClO₂S. Calculated, %: C 54.89; H 3.77; Cl 14.73; S 13.32.

3-(2-Hydroxyethoxy)-4-phenylsulfanyl-3-cyclopenten-1-ol (VII). A solution of 0.2 g (0.7 mmol) of ketone II in 2 ml of anhydrous THF was added dropwise to a suspension of 0.03 g (0.84 mmol) of LiAlH₄ in 5 ml of anhydrous diethyl ether, while stirring at room temperature under argon. The mixture was stirred for 3 h, 3 ml of water was added, and the product was extracted into chloroform $(3 \times 10 \text{ ml})$. The combined organic extracts were washed with a saturated solution of sodium chloride, dried over MgSO₄, and evaporated. The residue was subjected to chromatography on silica gel using chloroformmethanol (40:1) as eluent. Yield 0.10 g (56%). Colorless oily substance. IR spectrum, v, cm⁻¹: 1590, 1740. ¹H NMR spectrum, δ , ppm: 2.20 d (1H, 2-H, J = 15.4 Hz), 2.72 d.d (1H, 2-H, J = 15.4, 6.3 Hz), 2.43 d (1H, 4-H, J = 16.7 Hz), 2.75 d.d (1H, 4-H, J = 16.7)6.6 Hz), 3.60 br.s (4H, CH₂O, OH), 3.91 br.s (2H, CH₂O), 4.30 m (1H, 1-H), 7.01–7.23 m (5H, C₆H₅). ¹³C NMR spectrum, δ_{C} , ppm: 40.51 (C²); 42.90 (C⁵); 60.24 (CH₂OH); 67.15 (C¹); 71.15 (CH₂O); 97.79 (C^3) ; 125.26, 127.37, 128.67, 135.46 (C_6H_5) ; 158.45 (C⁴). Found, %: C 62.01; H 6.55. C₁₃H₁₆O₃S. Calculated, %: C 61.89; H 6.39; S 12.71.

3,4-Dimethoxy-2-cyclopentenone (VIII). A mixture of 0.20 g (0.7 mmol) of ketone **II** and 0.5 g (7.7 mmol) of zinc dust in 5 ml of anhydrous MeOH was heated under reflux until the conversion of the initial ketone was complete (3 h, TLC). The mixture was diluted with chloroform, filtered from zinc, washed with a saturated solution of sodium chloride, dried over MgSO₄, and evaporated. The residue was subjected to chromatography on silica gel using

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 39 No. 10 2003

benzene–methanol (9:1) as eluent. Yield 0.11 g (59%). IR spectrum, v, cm⁻¹: 1605, 1740. ¹H NMR spectrum, δ , ppm: 2.40 d.d (1H, 5-H, J = 2.4, 17.7 Hz), 2.72 d.d (1H, 5-H, J = 6.6, 17.7 Hz), 3.47 s (3H, OMe), 3.92 s (3H, OMe), 4.45 d.d (1H, 4-H, J = 2.4, 6.6 Hz), 5.37 s (1H, 2-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 41.35 (C⁵), 57.74 (OMe), 59.02 (OMe), 77.04 (C⁴), 105.77 (C²), 186.95 (C³), 201.12 (C¹). Found, %: C 88.67; H 11.33. C₈H₁₂. Calculated, %: C 88.82; H 11.18.

This study was financially supported by the Russian Foundation for Basic Research (project no. 99-03-32915 a) and by the "Integration" Federal Special-Purpose Program (project no. 30344).

REFERENCES

 Akhmetvaleev, R.R., Bikbulatov, R.V., Belogaeva, T.A., Akbutina, F.A., and Miftakhov, M.S., *Russ.* J. Org. Chem., 2003, vol. 39, p. 658.

- 2. Donaldson, R.E. and Fuchs, P., J. Am. Chem. Soc., 1981, vol. 103, no. 8, p. 2108.
- 3. Saddler, J.C. and Fuchs, P.L., J. Am. Chem. Soc., 1981, vol. 103, no. 8, p. 2112.
- Donaldson, R.E., Saddler, J.C., Burn, S., Mckenzie, A.T., and Fuchs, P.L., *J. Org. Chem.*, 1983, vol. 48, no. 13, p. 2167.
- 5. Akhmetvaleev, R.R., Imaeva, L.R., Belogaeva, T.A., and Miftakhov, M.S., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1997, no. 9, p. 1699.
- Tolstikov, G.A., Ismailov, S.A., Vel'der, Ya.L., and Miftakhov, M.S., *Zh. Org. Khim.*, 1991, vol. 27, p. 90.
- Akhmetvaleev, R.R., Imaeva, L.R., Belogaeva, T.A., and Miftakhov, M.S., *Russ. J. Org. Chem.*, 1999, vol. 35, p. 238.
- Kirchner, J.G., *Thin-Layer Chromatography*, Perry, E.S., Ed., New York: Wiley, 1978, 2nd ed. Translated under the title *Tonkosloinaya khromatografiya*, Moscow: Mir, 1981, vol. 1, p. 269.